Scaling in quantum gravity

نویسنده

  • J. Ambjørn
چکیده

The 2-point function is the natural object in quantum gravity for extracting critical behavior: The exponential fall off of the 2-point function with geodesic distance determines the fractal dimension dH of space-time. The integral of the 2-point function determines the entropy exponent γ, i.e. the fractal structure related to baby universes, while the short distance behavior of the 2-point function connects γ and dH by a quantum gravity version of Fisher’s scaling relation. We verify this behavior in the case of 2d gravity by explicit calculation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scaling Dimensions of Manifestly Generally Covariant Operators in Two-Dimensional Quantum Gravity

Using (2+ǫ)-dimensional quantum gravity recently formulated by Kawai, Kitazawa and Ninomiya, we calculate the scaling dimensions of manifestly generally covariant operators in two-dimensional quantum gravity coupled to (p, q) minimal conformal matter. Although the spectrum includes all the scaling dimensions of the scaling operators in the matrix model except the boundary operators, there are a...

متن کامل

Fractal Quantum Space -Time

In this paper we calculated the spectral dimension of loop quantum gravity (LQG) using the scaling property of the area operator spectrum on spin-network states and using the scaling property of the volume and length operators on Gaussian states. We obtained that the spectral dimension of the spatial section runs from 1.5 to 3, and under particular assumptions from 2 to 3 across a 1.5 phase whe...

متن کامل

Scaling and the Fractal Geometry of Two-Dimensional Quantum Gravity

We examine the scaling of geodesic correlation functions in two-dimensional gravity and in spin systems coupled to gravity. The numerical data support the scaling hypothesis and indicate that the quantum geometry develops a nonperturbative length scale. The existence of this length scale allows us to extract a Hausdorff dimension. In the case of pure gravity we find dH ≈ 3.8, in support of rece...

متن کامل

Critical Behavior of Dynamically Triangulated Quantum Gravity in Four Dimensions

We performed detailed study of the phase transition region in Four Dimensional Simplicial Quantum Gravity, using the dynamical triangulation approach. The phase transition between the Gravity and Antigravity phases turned out to be asymmetrical, so that we observed the scaling laws only when the Newton constant approached the critical value from perturbative side. The curvature susceptibility d...

متن کامل

3 D Lorentzian Quantum Gravity from the asymmetric ABAB matrix model 1

The asymmetric ABAB-matrix model describes the transfer matrix of threedimensional Lorentzian quantum gravity. We study perturbatively the scaling of the ABAB-matrix model in the neighbourhood of its symmetric solution and deduce the associated renormalization of three-dimensional Lorentzian quantum gravity. pacs: 04.60Gw, 04.20Gz, 04.60Kz, 04.60Nc Presented by J.J. at the Workshop on Random Ge...

متن کامل

Ground State of 2d Quantum Gravity and Spectral Density of Random Matrices

We compute the exact spectral density of random matrices in the ground state of the quantum hamiltonian corresponding to the matrix model whose double scaling limit describes pure gravity in 2D. We show that the non-perturbative effects are very large and in certain cases dominate the semi-classical WKB contribution studied in the earlier literature. The physical observables in this model are t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995